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In this paper, we show that all simple outerplanar graphs G with
minimum degree at least 2 and positive Lin–Lu–Yau Ricci curva-
ture on every edge have maximum degree at most 9. Furthermore,
if G is maximally outerplanar, then G has at most 10 vertices. Both
upper bounds are sharp.
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1. Introduction

Ricci curvature plays a crucial role in the geometric analysis of Riemannian
manifolds. Roughly speaking, it measures the degree to which the geometry
of a metric tensor differs locally from that of a Euclidean space. Curvature
in the continuous setting has been studied in depth throughout the past 200
years, and more recent interest has arisen in establishing analogous results in
metric spaces. The definition of the (non-combinatorial) Ricci curvature on
metric spaces first came from the Bakry and Émery notation [1] who defined
the “lower Ricci curvature bound” through the heat semigroup (Pt)t≥0 on
a metric measure space. Ollivier [19] defined the coarse Ricci curvature of
metric spaces in terms of how much small balls are closer (in Wasserstein
transportation distance) than their centers are. This notion of coarse Ricci
curvature on discrete spaces was also made explicit in the Ph.D. thesis of
Sammer [21]. The first definition of Ricci curvature on graphs was introduced
by Chung and Yau in [4]. To obtain a good log-Sobolev inequality, they defined
Ricci-flatness in graphs. Later, Lin and Yau [13] gave a generalization of the
lower Ricci curvature bound in the framework of graphs. In [12], Lin, Lu, and
Yau modified Ollivier’s Ricci curvature [19] and defined a new variant of Ricci
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curvature on graphs, which does not depend on the idleness of the random
walk. For other variants of curvature on discrete spaces, see e.g., [5, 7] and
the references therein.

In this paper, we are interested in studying planar and outerplanar graphs
with positive curvature. A planar graph is a graph that can be embedded in
the plane, i.e., it can be drawn on the plane in such a way that its edges in-
tersect only at their endpoints. Infinite planar graphs are often treated as the
discrete version of noncompact simply connected 2-dimensional manifolds.
Thus it’s natural to consider the ‘curvature’ of planar graphs. A notion of
curvature, previously more extensively studied in graph theory, is the combi-
natorial curvature, which is defined on the vertices of a graph. Given a graph
G that is 2-cell embedded in a surface without loops or multiple edges, the
combinatorial curvature of v ∈ V (G) is defined as K(v) := 1− dv

2 +
∑︂

σ∈F (v)

1
|σ| ,

where dv denotes the degree of v, F (v) is the multiset of faces touching v and
|σ| is the size of the face σ. A graph G is said to have positive combinatorial
curvature everywhere if ϕ(v) > 0 for all v ∈ V (G). Higuchi [10] conjectured
that if G is a simple connected graph embedded into a 2-sphere with positive
combinatorial curvature everywhere and minimum degree δ(G) ≥ 3, then G
is finite. Higuchi’s conjecture was verified by Sun and Yu [22] for cubic planar
graphs and resolved by DeVos and Mohar [6]. In particular, DeVos and Mohar
showed the following theorem.

Theorem 1 ([6]). Suppose G is a connected simple graph embedded into a
2-dimensional topological manifold Ω without boundary and G has minimum
degree at least 3. If G has positive combinatorial curvature, then it is finite
and Ω is homeomorphic to either a 2-sphere or a projective plane. Moreover,
if G is not a prism, an antiprism, or one of their projective plane analogues,
then |V (G)| ≤ 3444.

The minimum possible constants for |V (G)| in Theorem 1 for G em-
bedded in a 2-sphere and a projective plane, respectively, were studied in
[20, 17, 3, 23, 18]. In particular, Nicholson and Sneddon [17] gave examples of
positively (combinatorially) curved graphs with 208 vertices embedded into
a 2-sphere. The upper bound on |V (G)| was recently settled by Ghidelli [9].
Planar graphs with nonnegative combinatorial curvature have also been ex-
tensively studied (see [11] and the references within). Tight upper bounds on
certain graph classes with positive Lin–Lu–Yau curvature everywhere are also
obtained in [8].

Recently, Lu and Wang [15] initiated the study of the order of planar
graphs with positive Lin–Lu–Yau curvature (LLY curvature for short), which
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is defined on the vertex pairs of a graph. A graph G is called positively LLY-
curved if it has positive Lin–Lu–Yau curvature on every vertex pair of G.
For brevity of the introduction, we give the definition of the Lin–Lu–Yau
curvature in Section 2. In [15], Lu and Wang established an analogue of DeVos
and Mohar’s result in the context of Lin–Lu–Yau curvature. In particular,
they showed the following two theorems.

Theorem 2 ([15]). Let G be a simple positively LLY-curved planar graph G
with δ(G) ≥ 3. Then the maximum degree Δ(G) ≤ 17.

Theorem 3 ([15]). If G is a simple positively LLY-curved planar graph with
minimum degree at least 3, then G is finite. In particular, |V (G)| ≤ 17544.

The question of determining a sharp upper bound on the order of a pos-
itively LLY-curved planar graph is still open and seems hard. In this paper,
we obtain sharp upper bounds on the maximum degree and order of a pos-
itively LLY-curved (maximal) outerplanar graph. A graph is outerplanar if
it admits a planar embedding such that all vertices lie on the outer face. A
maximal outerplanar graph is an edge maximal outerplanar graph. We first
show a sharp upper bound on the maximum degree of a positively LLY-curved
outerplanar graph.

Theorem 4. Let G be a simple positively LLY-curved outerplanar graph
with δ(G) ≥ 2. Then Δ(G) ≤ 9 and the upper bound is sharp.

Using Theorem 4 and additional degree constraints shown in Section 4, we
obtain a sharp upper bound on the order of positively LLY-curved maximal
outerplanar graphs.

Theorem 5. Let G be a positively LLY-curved maximal outerplanar graph.
Then |V (G)| ≤ 10 and the upper bound is sharp.

The upper bounds in Theorem 4 and Theorem 5 are both achieved by the
fan graph on 10 vertices (see Figure 1). We remark that very recently, Liu,
Lu and Wang [14] extended Theorem 5 to the class of all outerplanar graphs
(not necessarily maximal) with minimum degree 2.

For convenience, in the rest of the paper, we simply say a graph G is pos-
itively curved if it is positively LLY-curved, and we simply denote κLLY (x, y)
by κ(x, y).

Notation and Terminology. Given a graph G and x ∈ V (G), we use
N(x) to denote the neighborhood of x, i.e., N(x) = {y ∈ V (G) : xy ∈ E(G)}.
Let dx denote the degree of x, i.e., dx = |N(x)|. Let N [x] := N(x) ∪ {x}.
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Figure 1: Fan graph on 10 vertices with curvature of each edge computed by
SageMath.

Given x, y ∈ V (G), let N(x, y) denote the common neighborhood of x and y,
i.e., N(x, y) := N(x)∩N(y). Moreover, given S ⊆ V (G), define N(S) := {x ∈
V (G) : xs ∈ E(G) for some s ∈ S} and E(x, S) := {xs ∈ E(G) : s ∈ S}.
Throughout the paper, for xy ∈ E(G), we will consider the local configuration
Hxy ⊆ G, the induced subgraph of G defined by Hxy = G[N [x] ∪ N [y]]. For
x, y ∈ V (G), we use d(x, y) to denote the number of edges in a shortest path
between x and y. Given an outerplanar graph G and an edge e, we call e an
exterior edge if it lies on the boundary of the outer face of G, and we call e
an interior edge otherwise.

2. Lin–Lu–Yau Ricci curvature

In this section, we define the Lin–Lu–Yau Ricci curvature. We closely fol-
low the notation of [15, 19]. Let m1 and m2 be two probability distribu-
tions on V (G). That is, for i = 1, 2, we have mi : V (G) → [0, 1] such that∑︁

x∈V (G) mi(x) = 1. A coupling between m1 and m2, is a map A : V (G) ×
V (G) → [0, 1] with finite support such that

∑︁
y∈V (G) A(x, y) = m1(x) and∑︁

x∈V (G) A(x, y) = m2(y). The transportation distance between m1 and m2
is defined as

(1) W (m1,m2) = inf
A

∑︂
x,y∈V (G)

A(x, y) d(x, y),

where the infimum is taken over all couplings A between m1 and m2. By the
duality theorem of a linear optimization problem, the transportation distance
can also be written as

(2) W (m1,m2) = sup
f∈Lip(1)

∑︂
x∈V (G)

f(x) (m1(x) −m2(x)) ,

where the supremum is taken over all 1-Lipschitz functions f . A random
walk m on a graph G = (V,E) is defined as a family of probability measures
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{mv(·)}v∈V (G) such that mv(u) = 0 for all uv /∈ E(G). It follows that mv(u) ≥
0 for all v, u ∈ V (G) and

∑︁
u∈N [v] mv(u) = 1. For v ∈ V (G), consider the α-

lazy random walk {mα
v }v∈V (G) defined as

mα
v (u) =

⎧⎪⎨⎪⎩
α if u = v,
1−α
dv

if u ∈ N(v),
0 otherwise.

In [12], Lin, Lu and Yau defined the Ricci curvature of graphs based on the
α-lazy random walk as α goes to 1. More precisely, for any x ̸= y ∈ V , they
defined the α-Ricci-curvature κα(x, y) to be

(3) κα(x, y) = 1 − W (mα
x ,m

α
y )

d(x, y)

and the Lin–Lu–Yau Ricci curvature κLLY of the vertex pair (x, y) in G to be

(4) κLLY(x, y) = lim
α→1

κα(x, y)
(1 − α) .

Recall that a graph G is called positively LLY-curved if it has positive Lin–
Lu–Yau curvature on every vertex pair of G. It was shown [12] that if
κLLY(x, y) ≥ κ0 for every edge xy ∈ E(G), then κLLY(x, y) ≥ κ0 for any
pair of vertices (x, y).

Recently, Münch and Wojciechowski [16] gave a limit-free formulation
of the Lin–Lu–Yau Ricci curvature using graph Laplacian. Given a graph
G = (V,E), the graph Laplacian Δ is defined as

(5) Δf(v) = 1
dv

∑︂
u∈N(v)

(f(u) − f(v)).

The Lin–Lu–Yau curvature can be alternatively expressed [16] as

(6) κLLY (x, y) = inf
f∈Lip(1),
∇yxf=1

∇xyΔf,

where ∇vuf = f(v)−f(u)
d(v,u) is the gradient function. Following Lemma 2.2 of [2], it

suffices to optimize over all integer-valued 1-Lipschitz functions f . An integer-
valued 1-Lipschitz function f : V (G) → ℤ that attains the infimum in Equa-
tion (6) is called optimal for (x, y).
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3. Proof of Theorem 4

In this section, we show a sharp upper bound on the maximum degree of a
positively curved outerplanar graph. We first recall the following lemma of
Lu and Wang [15].

Lemma 1 ([15]). Let G be a simple positively curved planar graph and xy ∈
E(G) be an arbitrary edge with dx ≤ dy. Suppose S ⊆ N(x) \ {y}, |S| = s,
and |S ∩N(y)| = k. Then

|N(S) ∩N(y)| > s

dx
dy − (k + 1 + |N(x, y)|) + |N(S) ∩N(x, y)|.

When S = N(x) \ {y} in the equation above, we have s = dx − 1 and
k = |N(x, y)|. We then obtain the following immediate corollary of Lemma 1.

Corollary 1. Let G be a simple positively curved planar graph and xy ∈ E(G)
be an arbitrary edge with dx ≤ dy. Let S = N(x) \ {y}. Then

|N(S) ∩N(y)| >
(︃

1 − 1
dx

)︃
dy − (2 |N(x, y)| + 1) + |N(S) ∩N(x, y)| .

Proof of Theorem 4. Suppose, towards a contradiction, that Δ(G) ≥ 10. Let
x, y ∈ V (G) such that dy = Δ(G) and xy ∈ E(G) is an exterior edge. Then
dx ≥ δ(G) ≥ 2. Let S = N(x) \ {y} and let T := N(S) ∩ N(y). Since xy is
an exterior edge, the common neighborhood N(x, y) may either be empty, or
contain one vertex. We consider these cases separately.
Case 1: Suppose |N(x, y)| = 0. Using Corollary 1,

|T | >
(︃

1 − 1
dx

)︃
dy − 1 + |N(S) ∩N(x, y)|

≥ 1
2 · 10 − 1 + |N(S) ∩N(x, y)|

≥ 4.

Hence |T | ≥ 5. However, note that contracting all edges in E(x, S) yields a
K2,3 minor in G, contradicting the outerplanarity of G.
Case 2: Suppose |N(x, y)| = 1 and let z be the only common neighbor in
N(x, y). If dx = 2, then |S| = |N(x) \ {y}| = 1 and

|T | >
(︃

1 − 1
dx

)︃
dy − 3 + |N(S) ∩N(x, y)|
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≥ 1
2 · 10 − 3 + |N(S) ∩N(x, y)|

≥ 2.

Hence, |T | ≥ 3. Therefore, the only vertex in S (which is z) is adjacent
to at least 3 neighbors of y, yielding a K2,3 minor and contradicting the
outerplanarity of G. If dx ≥ 3, then

|T | >
(︃

1 − 1
dx

)︃
dy − 3 + |N(S) ∩N(x, y)|

≥ 2
3 · 10 − 3 + |N(S) ∩N(x, y)|

≥ 11
3 .

Hence, |T | ≥ 4. Since dy = Δ(G) ≥ 10 and dx ≥ 3, the sets N(y) \ {x, z}
and S \ {z} must be nonempty. For any v ∈ N(y) \ {x, z} and w ∈ S \ {z},
if vw ∈ E(G), then either z lies in the interior of the cycle wxyv which
contradicts that G is outerplanar, or xy lies in the interior of the cycle wxyv

which contradicts that xy is an exterior edge. Thus, we have that for any
v ∈ N(y) \ {x, z} and w ∈ S \ {z}, vw /∈ E(G).

Therefore, any v ∈ T \{x, z} must be adjacent to z. Since |T \{x, z}| ≥ 2
and x ∈ N(z), z is adjacent to at least three vertices in N(y), yielding a K2,3
minor together with y and N(z, y), contradicting the outerplanarity of G.

4. Exact curvature via local configuration

In this section, we characterize the possible degree pairs of an edge with pos-
itive Lin–Lu–Yau curvature in a maximal outerplanar graph by determining
the optimal 1-Lipschitz functions for every edge xy ∈ E(G). Recall that

(7) κ(x, y) = inf
f∈Lip(1),
∇yxf=1

∇xyΔf, where ∇xyf = f(x) − f(y)
d(x, y) .

Moreover, recall that by Lemma 2.2 of [2], it suffices to consider integer-
valued optimal functions f0. Thus, since ∇yxf0 = 1, we may assume without
loss of generality that f0(x) = 0 and f0(y) = 1. Then, due to the 1-Lipschitz
condition, Im(f0|N(x)) ⊆ {−1, 0, 1} and Im(f0|N(y)) ⊆ {0, 1, 2} where Im
denotes the image of a function.
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Lemma 2. Let G be a maximal outerplanar graph, and suppose xy ∈ E(G)
is an exterior edge such that dx ≤ dy. Then, κLLY (x, y) > 0 if and only if

(dx, dy) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 3), (3, 4)} .

Table 1: Degree pairs for positively curved exterior edges xy and local con-
figuration Hxy

Hxy δxz dx δyz dy κ(x, y) Positive degree pairs (dx, dy)

0 2 0 2 3/dx + 4/dy − 2 {(2, 2)}

0 2 1 ≥ 3
{︄

4/dx + 3/dy − 2 if dy < 2dx
3/dx + 5/dy − 2 if 2dx ≤ dy

{(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9)}

1 ≥ 3 1 ≥ dx 3/dx + 5/dy − 2 {(3, 3), (3, 4)}

Proof of Lemma 2. Let xy be an exterior edge of G. We will deduce optimal
functions f0 for the edge xy in all possible local configurations around xy,
that is, f0 such that

(8) κ(x, y) = inf
f∈Lip(1),
∇yxf=1

∇xyΔf = ∇xyΔf0.

Without loss of generality, we assign f0(x) = 0 and f0(y) = 1. Since xy is an
exterior edge and G is edge maximal, N(x)∩N(y) = {z} for some z ∈ V (G).
Then, since f0 ∈ Lip(1), we must have f0(z) ∈ {0, 1}. Let δxz = |N(x, z)\{y}|
and δyz = |N(y, z) \ {x}|. Note that, since G is outerplanar, δxz, δyz ∈ {0, 1}.
If δxz = 1, let N(x, z) \ {y} = {vxz}. Similarly, if δyz = 1, let N(y, z) \ {x} =
{vyz}. Since f0(x) = 0 and f0(y) = 1, we then obtain that

∇xyΔf0 = 1
dx

∑︂
v∈N(x)

(f0(v) − f0(x)) − 1
dy

∑︂
v∈N(y)

(f0(v) − f0(y))

= 1
dx

∑︂
v∈N(x)

f0(v) + 1
dy

∑︂
v∈N(y)

(1 − f0(v)).(9)

Observe that since G is outerplanar, xy is an exterior edge and {z} =
N(x, y), we have that the distance from any vertex in N(x) \ {vxz, y, z} to
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any vertex in N(y) \ {vyz, x, z} is 3. Since f0 is an optimal function for xy,
we then obtain that f0(v) = −1 for all v ∈ N(x) \ {vxz, y, z} and f0(v) = 2
for all v ∈ N(y) \ {vyz, x, z}. Observe that if δxz = 1, i.e., vxz exists, then
by the 1-Lipschitz and integer-valued property of f0, we have that f0(vxz) ∈
{f0(z), f0(z) − 1}. Now since f0 is optimal, it is easy to see that f0(vxz) =
f0(z)−1 so that Δf0(x) is minimal in (8). Similarly, if δyz = 1, then f0(vyz) =
f0(z) + 1. Equation (9) can then be re-written as

∇xyΔf0 = 1
dx

[δxzf0(vxz) + f0(z) + 1 − (dx − 2 − δxz)]

+ 1
dy

[δyz(1 − f0(vyz)) + (1 − f0(z)) + 1 − (dy − 2 − δyz)]

= 1
dx

[δxz(f0(z) − 1) + f0(z) + 1 − (dx − 2 − δxz)]

+ 1
dy

[−δyzf0(z) + (1 − f0(z)) + 1 − (dy − 2 − δyz)]

=
(︃

1 + δxz
dx

− 1 + δyz
dy

)︃
f0(z) + 3

dx
+ 4 + δyz

dy
− 2.(10)

Note that 1+δxz
dx

− 1+δyz
dy

< 0 if and only if δxz = 0, δyz = 1 and dy < 2dx.
Case 1 : 1+δxz

dx
− 1+δyz

dy
< 0. Then it is clear that ∇xyΔf0 is minimized

when f0(z) = 1. Moreover, since in this case δxz = 0, f0 still satisfies the
1-Lipschitz condition.

Case 2 : 1+δxz
dx

− 1+δyz
dy

≥ 0. Then it is clear that ∇xyΔf0 is minimized when
f0(z) = 0. Suppose δxz = 1 and δyz = 0, then dx ≥ 3. Since G is maximally
outerplanar, yz must be an exterior edge, which implies dy = 2, a contradic-
tion of dx ≤ dy. Hence, it follows that (δxz, δyz) ∈ {(0, 0), (0, 1), (1, 1)}. We
list each local configuration based on δxz and δyz in Table 1 and characterize
the possible degree pairs when κ(x, y) > 0. It is not hard to check that f0 can
be made 1-Lipschitz in each case.

Lemma 3. Let G be a maximal outerplanar graph, and suppose xy ∈ E(G) is
an interior edge such that dx ≤ dy. A complete characterization of degree pairs
(dx, dy), depending upon the local configuration, such that κLLY (x, y) > 0 is
given by Table 2.

Proof of Lemma 3. Let xy be an interior edge of G. We will deduce optimal
functions f0 for the edge xy in all possible local configurations around xy.
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Table 2: Positive degree pairs for interior edges xy based on the local config-
uration Hxy

Hxy δxw δxz dx δyw δyz dy κ(x, y) Positive degree pairs (dx, dy)

0 0 3 0 0 3 4/dx + 6/dy − 2 {(3, 3)}

0 0 3 0 1 ≥ 4
{︄

5/dx + 5/dy − 2 if dy < 2dx
4/dx + 7/dy − 2 if 2dx ≤ dy

{(3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9)}

0 0 3 1 1 ≥ 5
{︄

6/dx + 4/dy − 2 if dy < 2dx
4/dx + 8/dy − 2 if 2dx ≤ dy

{(3, 5), (3, 6), (3, 7), (3, 8), (3, 9)}

0 1 ≥ 4 0 1 ≥ dx 4/dx + 7/dy − 2 {(4, 4), (4, 5), (4, 6), (5, 5)}

0 1 ≥ 4 1 0 ≥ dx

{︄
5/dx + 5/dy − 2 if dy < 2dx
4/dx + 7/dy − 2 if 2dx ≤ dy

{(4, 4), (4, 5), (4, 6)}

0 1 ≥ 4 1 1 ≥ max{5, dx}
{︄

5/dx + 6/dy − 2 if dy < 2dx
4/dx + 8/dy − 2 if 2dx ≤ dy

{(4, 5), (4, 6), (4, 7), (5, 5)}

1 1 ≥ 5 0 1 ≥ dx 4/dx + 7/dy − 2 {(5, 5)}

1 1 ≥ 5 1 1 ≥ dx 4/dx + 8/dy − 2 {(5, 5), (5, 6)}

Similar to before, without loss of generality, we assume that f0(x) = 0
and f0(y) = 1.

Since xy is an interior edge and G is edge maximal, N(x)∩N(y) = {w, z}
for some w, z ∈ V (G) and by the 1-Lipschitz condition we have f0(w), f0(z) ∈
{0, 1}. Similar to before, Equation (9) still holds, i.e.,

∇xyΔf0 = 1
dx

∑︂
v∈N(x)

(f0(v) − f0(x)) − 1
dy

∑︂
v∈N(y)

(f0(v) − f0(y))

= 1
dx

∑︂
v∈N(x)

f0(v) + 1
dy

∑︂
v∈N(y)

(1 − f0(v)).(11)

Define δxw = |N(x,w) \ {y}|, δxz = |N(x, z) \ {y}|, δyw = |N(y, w) \ {x}|
and δyz = |N(y, z) \ {x}|. Since G is outerplanar, δxw, δxz, δyw, δyz ∈ {0, 1}.
For a ∈ {x, y} and b ∈ {w, z}, if δab = 1, then let N(a, b)\{x, y} = {vab}.

Observe that in (11), ∇xyΔf0 is minimized when f0(v) is as small as
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possible for v ∈ N(x) and as big as possible for v ∈ N(y) while keeping f0 1-
Lipschitz. Note that since G is outerplanar, {w, x} separates vxw (if it exists)
with vertices in N(y)\{x,w}. Similar to Lemma 2, if δxw = 1, then f0(vxw) =
f0(w)−1 due to the optimality of f0. Similarly, f0(vxz) = f0(z)−1, f0(vyw) =
f0(w) + 1, f0(vyz) = f0(z) + 1 if vxz, vyw, vyz exist respectively.

Moreover, note that the distance from any vertex in N(x) \ {vxw, w, y,
z, vxz} to any vertex N(y) \ {vyw, w, x, z, vyz} is 3. Therefore, since f0 is
optimal, we obtain that f0(v) = −1 for all v ∈ N(x) \ {vxw, w, y, z, vxz} and
f0(v) = 2 for all v ∈ N(y) \ {vyw, w, x, z, vyz}. Then Equation (11) becomes

∇xyΔf0 = 1
dx

[︃
δxw(f0(w) − 1) + f0(w) + 1 + f0(z) + δxz(f0(z) − 1)

− (dx − 3 − δxw − δxz)
]︃

+ 1
dy

[︃
− δywf0(w) + (1 − f0(w)) + 1

+ (1 − f0(z)) − δyzf0(z) − (dy − 3 − δyw − δyz)
]︃

=
(︃

1 + δxw
dx

− 1 + δyw
dy

)︃
f0(w) +

(︃
1 + δxz
dx

− 1 + δyz
dy

)︃
f0(z)

+ 4
dx

+ 6 + δyw + δyz
dy

− 2.

Note that 1+δxw
dx

− 1+δyw
dy

< 0 if and only if δxw = 0, δyw = 1 and dy <

2dx. In that case, since f0 is optimal, it must be the case that f0(w) = 1.
On the other hand, if 1+δxw

dx
− 1+δyw

dy
is nonnegative, ∇xyΔf0 is minimized

when f0(w) = 0.
Similarly, note that 1+δxz

dx
− 1+δyz

dy
< 0 if and only if δxz = 0, δyz = 1

and dy < 2dx. In that case, it must happen that f0(z) = 1 as before. On the
other hand, if 1+δxz

dx
− 1+δyz

dy
≥ 0, we may assume f0(z) = 0. Note that the case

when δxw + δxz ≥ 1 and δyw = δyz = 0 is impossible since dx ≤ dy. We list
each local configuration (up to symmetry) for δxw, δxz, δyw and δyz in Table 2
and compute the possible degree pairs when κ(x, y) > 0.

5. Bounding the order

In this section, we bound the order of a positively curved maximal outerplanar
graph G. Note that since G is maximally outerplanar, if |V (G)| ≥ 3, then G
is connected and δ(G) ≥ 2. Given two graphs A and B, let the join of A and
B, denoted by A ∨B, be the graph obtained from A ∪B by connecting each
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vertex in A with each vertex in B. We begin with the following structural
lemma.

Lemma 4. Let G be a maximal outerplanar graph and suppose x ∈ V (G).
Then, G[N [x]] ∼= K1 ∨ Pdx .

Proof. Since G is outerplanar, G[N(x)] must be a disjoint union of paths.
Moreover, since G is edge maximal, G[N(x)] must be a single path (otherwise
we could add an edge to merge two paths into one without violating the
outerplanarity condition). Thus G[N [x]] ∼= K1 ∨ Pdx .

Proof of Theorem 5. We will show Theorem 5 by induction on |V (G)|. For
the base case, we consider |V (G)| = 11. Using SageMath, we verify that all
228 maximal outerplanar graphs on 11 vertices are non-positively curved.1

Now consider G, a maximal outerplanar graph on n ≥ 12 vertices. As-
sume, towards a contradiction, that G is positively curved. Let w ∈ V (G)
such that dw = 2 (such w exists since every maximal outerplanar graph con-
tains a vertex of degree 2). Note that G − w is maximally outerplanar. It
follows from the induction hypothesis that G − w is not positively curved,
thus there exists some xy ∈ E(G) with κ(x, y) ≤ 0. Without loss of generality,
assume that dx ≤ dy. We write dv for the degree of v in G, and we write d̃v
for the degree of v in G − w. Since xy is non-positively curved in G − w,
Lemmas 2 and 3 exactly characterize the possible values of (d̃x, d̃y); we call
degree pairs corresponding to non-positively curved edges bad degree pairs
and degree pairs corresponding to positively curved edges good degree pairs.

First, suppose w ̸∈ N(x)∪N(y), so that (dx, dy) = (d̃x, d̃y). Since (d̃x, d̃y)
is a bad degree pair and the degrees of x and y are the same in G and
G − w, we have that (dx, dy) is a bad degree pair, a contradiction. Next,
suppose w ∈ N(x) \ N(y) so that (dx, dy) = (d̃x + 1, d̃y). Notice that since
w ∈ N(x) \ N(y), xy is an exterior (or interior) edge in G if and only if it
is an exterior (respectively, interior) edge in G − w. Examining Table 1 and
Table 2, we see that, given a degree pair (a, b) that is bad for exterior (or
interior) edges, the degree pair (a+ 1, b) is also bad for exterior (respectively,
interior) edges. Thus, (dx, dy) is a bad degree pair in G, contradicting our
assumption that G is positively curved. The case when w ∈ N(y) \ N(x) is
similar.

The remainder of the proof addresses the final case, where w ∈ N(x, y),
so that (dx, dy) = (d̃x+1, d̃y +1). Note that in this case, xy has to be exterior

1The SageMath code used to verify is available at: https://github.com/
ghbrooks28/outerplanar-LLY/.

https://github.com/ghbrooks28/outerplanar-LLY/
https://github.com/ghbrooks28/outerplanar-LLY/
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Figure 2: Hxy in Case 1 and 2.

edge of G − w. Since xy is non-positively curved in G − w, we obtain from
Lemma 2 that

(12)
(˜︁dx, ˜︁dy) ̸∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(2, 7), (2, 8), (2, 9), (3, 3), (3, 4)}.

Note that by Theorem 4, Δ(G) ≤ 9. It follows that max{d̃y, d̃x} ≤ 8. By
Equation (12), it suffices to consider xy such that d̃x ≥ 3 and d̃y ≥ 4, where
d̃y > 4 if d̃x = 3. Then by Lemma 3, (dx, dy) = (d̃x +1, d̃y +1) is a bad degree
pair (and so G would be non-positively curved) for all values except (dx, dy) ∈
{(4, 6), (5, 5), (4, 7), (5, 6)}. However, note that when (dx, dy) = (4, 7) or (5, 6),
max{δxw, δyw} = 1 (see Table 2 in Lemma 3), which contradicts that dw = 2.
Hence we are left with two cases when (dx, dy) ∈ {(4, 6), (5, 5)}. We will
examine the local configuration Hxy below.

Case 1: Suppose (dx, dy) = (4, 6). Let C ⊆ G be the outer face cycle in G.
Using Lemma 4, we have the local configuration Hxy, labeled as shown in
Figure 2 (left). Let x′ ∈ NC(x) \ {w} and y′, v, u ∈ NC(y) \ {w} such that
y′vuzxw is the path induced by N(y). Since dy = 6, yy′ is an exterior edge,
and yz, yu, yv are interior edges. Note that G is assumed to be positively
curved. Thus the degree pairs of yy′, yz, yu and yv all have to be good. By
Lemma 2 and Lemma 3, we have dy′ = 2, dz ∈ {4, 5}, and du, dv ∈ {3, 4, 5}.
Since dx = 4, and xx′ is an exterior edge, dx′ ∈ {2, 3}.

We first claim that dx′ = 2. Otherwise, if dx′ = 3, then there exists
x′′ ∈ V (G) \ {x} such that x′′ ∈ N(x′, z), which implies dz ≥ 5. By Lemma 2
and Lemma 3, zu must then be an interior edge, which implies that dz ≥ 6.
But now (dy, dz) is a bad degree pair, contradicting that yz is positively
curved. Hence dx′ = 2.

But now if we repeat the argument by considering G−x′ instead of G−w,
we obtain contradictions unless (dx, dz) ∈ {(4, 6), (5, 5)}, which is impossible
in this case since dx = 4 and dz < 6.

Case 2: Suppose (dx, dy) = (5, 5). Let C ⊆ G be the outer face cycle.
Let x′, u ∈ NC(x) \ {w} such that x′uzyw is the path induced by N(x) (see
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Figure 2 (right)). Since dx = 5, and xx′ is an exterior edge, it follows from
Lemma 2 that dx′ = 2. Now if we repeat the argument by considering G− x′

instead of G− w, we obtain contradictions unless (dx, du) = (5, 5). However,
this is impossible since by the configurations in Lemma 3, if (dx, du) = (5, 5),
then dx′ > 2, giving a contradiction.

This completes the proof of Theorem 5.

Acknowledgments

Most of the research presented in this paper was conducted at the 2023 MRC
Summer Conference: Ricci Curvatures of Graphs and Applications to Data
Science, supported by the National Science Foundation under Grant Number
1916439. We sincerely thank the organizers. Anna Schenfisch was partially
supported by the Dutch Research Council (NWO) under project no. P21-
13. Zhiyu Wang was partially supported by the LA Board of Regents grant
LEQSF(2024-27)-RD-A-16. Jing Yu was partially supported by the NSF CA-
REER grant DMS-2239187 (PI: Anton Bernshteyn) during her residency at
the School of Mathematics, Georgia Institute of Technology.

We would like to sincerely thank the anonymous referees for their valuable
comments and suggestions that greatly improved the manuscript.

References

[1] D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de
probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math. 1123,
Springer, Berlin, 1985. MR0889476

[2] B. Bhattacharya and S. Mukherjee, Exact and asymptotic results on
coarse Ricci curvature of graphs, Discrete Math., 338(1) (2015), 23–42.
MR3273535

[3] B. Chen and G. Chen, Gauss–Bonnet formula, finiteness condition,
and characterizations of graphs embedded in surfaces, Graphs Combin.,
24(3) (2008), 159–183. MR2410938

[4] F. Chung and S.-T. Yau, Logarithmic Harnack inequalities, Math. Res.
Lett. 3 (1996), 793–812. MR1426537

[5] K. Devriendt and R. Lambiotte, Discrete curvature on graphs from the
effective resistance, J. Phys.: Complex., 3(2) (2022), 025008.

[6] M. DeVos and B. Mohar, An analogue of the Descartes–Euler formula
for infinite graphs and Higuchi’s conjecture, Trans. Amer. Math. Soc.,
359(7) (2007), 3287–3300. MR2299456

https://mathscinet.ams.org/mathscinet-getitem?mr=0889476
https://mathscinet.ams.org/mathscinet-getitem?mr=3273535
https://mathscinet.ams.org/mathscinet-getitem?mr=2410938
https://mathscinet.ams.org/mathscinet-getitem?mr=1426537
https://mathscinet.ams.org/mathscinet-getitem?mr=2299456


Outerplanar graphs with positive Lin–Lu–Yau curvature 479

[7] R. Forman, Bochner’s method for cell complexes and combinatorial Ricci
curvature, Discrete Comput. Geom., 29 (2003), 323–374. MR1961004

[8] E. Gamlath, X. Liu, L. Lu and X. Yuan, A tight bound on {C3, C5}-
free connected graphs with positive Lin–Lu–Yau Ricci curvature,
arXiv:2312.16593.

[9] L. Ghidelli, On the largest planar graphs with everywhere positive combi-
natorial curvature, J. Combin. Theory Ser. B., 158(2) (2023), 226–263.
MR4494559

[10] Y. Higuchi, Combinatorial curvature for planar graphs, J. Graph Theory
38(4) (2001), 220–229. MR1864922

[11] B. Hua and Y. Su, The set of vertices with positive curvature in a pla-
nar graph with nonnegative curvature, Adv. Math. 343 (2019), 789–820.
MR3891984

[12] Y. Lin, L. Lu and S.-T. Yau, Ricci curvature of graphs, Tohoku Math. J.
63 (2011) 605–627. MR2872958

[13] Y. Lin and S.-T. Yau, Ricci curvature and eigenvalue estimate on locally
finite graphs, Math. Res. Lett. 17 (2010), 345—358. MR2644381

[14] X. Liu, L. Lu and Z. Wang, On the size of outerplanar graphs with
positive Lin-Lu-Yau Ricci curvature, arXiv:2409.13666.

[15] L. Lu and Z. Wang, On the size of planar graphs with positive Lin–
Lu–Yau Ricci curvature, arXiv:2010.03716.

[16] F. Münch and R. Wojciechowski, Ollivier Ricci curvature for general
graph Laplacians: Heat equation, Laplacian comparison, non-explosion
and diameter bounds, Adv. Math., 356 (2019). MR3998765

[17] R. Nicholson and J. Sneddon, New graphs with thinly spread posi-
tive combinatorial curvature New Zealand J. Math., 41 (2011), 39–43.
MR2836763

[18] B.-G. Oh, On the number of vertices of positively curved planar graphs,
Discrete Math., 340(6) (2017), 1300–1310. MR3624614

[19] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct.
Anal. 256 (2009), 810–864. MR2484937

[20] T. Réti, E. Bitay and Z. Kosztolányi, On the polyhedral graphs with
positive combinatorial curvature, Acta Polytech. Hungar., 2(2) (2005),
19–37.

https://mathscinet.ams.org/mathscinet-getitem?mr=1961004
https://mathscinet.ams.org/mathscinet-getitem?mr=4494559
https://mathscinet.ams.org/mathscinet-getitem?mr=1864922
https://mathscinet.ams.org/mathscinet-getitem?mr=3891984
https://mathscinet.ams.org/mathscinet-getitem?mr=2872958
https://mathscinet.ams.org/mathscinet-getitem?mr=2644381
https://mathscinet.ams.org/mathscinet-getitem?mr=3998765
https://mathscinet.ams.org/mathscinet-getitem?mr=2836763
https://mathscinet.ams.org/mathscinet-getitem?mr=3624614
https://mathscinet.ams.org/mathscinet-getitem?mr=2484937


480 George Brooks et al.

[21] M.D. Sammer. Aspects of mass transportation in discrete concentra-
tion inequalities. PhD thesis, Georgia Institute of Technology, 2005.
MR2707115

[22] L. Sun and X. Yu, Positively curved cubic plane graphs are finite, J.
Graph Theory 47(4) (2004), 241–274. MR2096789

[23] L. Zhang, A result on combinatorial curvature for embedded graphs on
a surface, Discrete Math., 308(24) (2008), 6588–6595. MR2466966

George Brooks

University of South Carolina

Columbia, SC

USA

E-mail address: ghbrooks@email.sc.edu

Fadekemi Osaye

Troy University

Troy, AL

USA

E-mail address: fosaye@troy.edu

Anna Schenfisch

Eindhoven University of Technology

Eindhoven

Netherlands

E-mail address: a.k.schenfisch@tue.nl

Zhiyu Wang

Louisiana State University

Baton Rouge, LA

USA

E-mail address: zhiyuw@lsu.edu

Jing Yu

Fudan University

Shanghai

China

E-mail address: jyu@fudan.edu.cn

Received March 7, 2024

https://mathscinet.ams.org/mathscinet-getitem?mr=2707115
https://mathscinet.ams.org/mathscinet-getitem?mr=2096789
https://mathscinet.ams.org/mathscinet-getitem?mr=2466966
mailto:ghbrooks@email.sc.edu
mailto:fosaye@troy.edu
mailto:a.k.schenfisch@tue.nl
mailto:zhiyuw@lsu.edu
mailto:jyu@fudan.edu.cn

	Introduction
	Lin–Lu–Yau Ricci curvature
	Proof of Theorem 4
	Exact curvature via local configuration
	Bounding the order
	Acknowledgments
	References

